3.872 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=281 \[ \frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 d \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 a \sin (c+d x)}{3 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}-\frac {2 b \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \left (a^2-b^2\right )^2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[Out]

2/3*a*sin(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2)+4/3*(a^2+b^2)*sin(d*x+c)/(a^2-b^2)^2/d/co
s(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)-2/3*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*
d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x
+c))^(1/2)-2/3*(3*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2
)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a/(a^2-b^2)^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.69, antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {4264, 3844, 4100, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 d \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 a \sin (c+d x)}{3 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}-\frac {2 b \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \left (a^2-b^2\right )^2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(-2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*a*(a^2 - b^2)*d*Sqrt[Cos[c
+ d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(3*a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*
Sqrt[a + b*Sec[c + d*x]])/(3*a*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (2*a*Sin[c + d*x])/(3*(a^
2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) + (4*(a^2 + b^2)*Sin[c + d*x])/(3*(a^2 - b^2)^2*d*Sq
rt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3844

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a*d^2
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2))/(f*(m + 1)*(a^2 - b^2)), x] - Dist[d^2/((
m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e +
f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Lt
Q[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\\ &=\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a}{2}-\frac {3}{2} b \sec (c+d x)+a \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )}\\ &=\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} a \left (3 a^2+b^2\right )+a^2 b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}\\ &=\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )}-\frac {\left (\left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}\\ &=\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)}}\\ &=\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=-\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 11.70, size = 447, normalized size = 1.59 \[ \frac {(a \cos (c+d x)+b)^3 \left (\frac {2 b \sin (c+d x)}{3 \left (b^2-a^2\right ) (a \cos (c+d x)+b)^2}+\frac {2 \left (3 a^2 \sin (c+d x)+b^2 \sin (c+d x)\right )}{3 \left (b^2-a^2\right )^2 (a \cos (c+d x)+b)}\right )}{d \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sec ^{\frac {5}{2}}(c+d x) \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} (a \cos (c+d x)+b)^2 \left (-\left (3 a^2+b^2\right ) \tan \left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} (a \cos (c+d x)+b)+i a \left (3 a^2+4 a b+b^2\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\sec ^2\left (\frac {1}{2} (c+d x)\right ) (a \cos (c+d x)+b)}{a+b}} F\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-i \left (3 a^3+3 a^2 b+a b^2+b^3\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\sec ^2\left (\frac {1}{2} (c+d x)\right ) (a \cos (c+d x)+b)}{a+b}} E\left (i \sinh ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{3 a d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

((b + a*Cos[c + d*x])^3*((2*b*Sin[c + d*x])/(3*(-a^2 + b^2)*(b + a*Cos[c + d*x])^2) + (2*(3*a^2*Sin[c + d*x] +
 b^2*Sin[c + d*x]))/(3*(-a^2 + b^2)^2*(b + a*Cos[c + d*x]))))/(d*Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^(5/2)
) + (2*Cos[c + d*x]^(3/2)*(b + a*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*((
-I)*(3*a^3 + 3*a^2*b + a*b^2 + b^3)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^
2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + I*a*(3*a^2 + 4*a*b + b^2)*EllipticF[I*ArcSinh[Tan[
(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] -
(3*a^2 + b^2)*(b + a*Cos[c + d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*x)/2]))/(3*a*(a^2 - b^2)^2*d*(a + b*S
ec[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [F]  time = 1.22, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{b^{3} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + a^{3} \cos \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c))/(b^3*cos(d*x + c)^2*sec(d*x + c)^3 + 3*a*b^2*cos(d*x + c)
^2*sec(d*x + c)^2 + 3*a^2*b*cos(d*x + c)^2*sec(d*x + c) + a^3*cos(d*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 1.31, size = 1804, normalized size = 6.42 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

2/3/d*(3*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*sin(d*x+c)*a^3+EllipticE((-1+cos(d*x+c))*((a-b)/
(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))
^(1/2)*cos(d*x+c)^2*sin(d*x+c)*a*b^2-3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*
EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3+((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1
/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^2*b+3*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d
*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(
1+cos(d*x+c)))^(1/2)*a^3+3*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*b+cos(d*x+c)*sin(
d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos
(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b^2+cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a
+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(
1/2)*b^3-3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellipt
icF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3-2*cos(d*x+c)*sin(d*x+c)*((b+a*cos
(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/si
n(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b+cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1
+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2+3*Ell
ipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*((b+a*cos(d*x+c))/(1+cos(d*x
+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c)
,(-(a+b)/(a-b))^(1/2))*b^3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3
*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*((b+a*cos(d*x+c))/(1+cos
(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*
x+c),(-(a+b)/(a-b))^(1/2))*a*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*
x+c)-3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3+((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2*b+3*cos(d*x+c)*((a-b)/(a+b))^
(1/2)*a^3-3*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b+cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^2-cos(d*x+c)*((a-b)/(a+b))
^(1/2)*b^3+2*a^2*b*((a-b)/(a+b))^(1/2)-a*b^2*((a-b)/(a+b))^(1/2)+b^3*((a-b)/(a+b))^(1/2))*((b+a*cos(d*x+c))/co
s(d*x+c))^(1/2)*cos(d*x+c)^(1/2)/(b+a*cos(d*x+c))^2/sin(d*x+c)/(a-b)/(a+b)^2/a/((a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________